
Question 2: Long-Answer

- 2. The following questions relate to sulfur and some of its compounds.
 - (a) Write the balanced equation for the combustion of $S_8(s)$ to form $SO_2(g)$.
 - (b) Calculate the volume of $O_2(g)$, measured at 1.00 atm and 298 K, that is required to completely combust a 500.0 g sample of pure $S_8(s)$.
 - (c) A student claims that the combustion of S_8 is an oxidation-reduction reaction. Justify the claim by identifying the oxidation numbers of sulfur and oxygen both before and after the reaction.
 - (d) In the box below, draw a Lewis electron-dot diagram for one valid resonance structure of SO₂.

(e) Based on the diagram you drew in part (d), what is the approximate oxygen-sulfur-oxygen bond angle in SO₂? SO₂ can be oxidized to form SO₃ according to the following equation.

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$
 $\Delta H^{\circ} = -198 \text{ kJ/mol}_{rxn}$

(f) Is the value of ΔS° for the reaction represented above positive or negative? Justify your answer.

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(l)$$

- (g) Is the magnitude of ΔH° for the reaction to form SO₃(*l*), represented above, greater than, less than, or equal to the magnitude of ΔH° for the reaction to form SO₃(*g*)? Justify your answer.
- (h) Based on the information above, how does the thermodynamic favorability of the reaction change as the temperature of the reaction system is decreased? Justify your answer.

Scoring Guidelines for Question 2: Long-Answer

10 points

Learning Objectives: TRA-1.B TRA-2.A SPQ-4.A SAP-4.A SAP-4.C ENE-3.D ENE-4.A ENE-4.C

Write the balanced equation for the combustion of $S_8(s)$ to form $SO_2(g)$. (a)

One point for the balanced equation.

 $S_8(s) + 8 O_2(g) \rightarrow 8 SO_2(g)$

1 point 5.E TRA-1.B

Calculate the volume of O₂(g), measured at 1.00 atm and 298 K, that is required

to completely combust a 500.0 g sample of pure S₈(s).

1 point 5.F SPQ-4.A

One point for calculating the moles of O₂.

$$500.0 g S_8 \times \frac{8 \text{ mol O}_2}{256.5 g S_8} \times \frac{8 \text{ mol O}_2}{1 \text{ mol S}_8} = 15.60 \text{ mol O}_2$$

One point for calculating the volume of O₂.

1 point

SPQ-4.A

$$V = \frac{nRT}{P} = \frac{(15.60 \text{ mol})(0.08206 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})(298 \text{ K})}{1.00 \text{ atm}} = 381 \text{ L}$$

Total for part (b)

2 points

A student claims that the combustion of $S_8(s)$ is an oxidation-reduction reaction. Justify the claim by identifying the oxidation numbers of sulfur and oxygen both before and after the reaction.

One point for all four correct oxidation numbers.

Oxidation numbers before the reaction: S = 0, O = 0

Oxidation numbers after the reaction: S = +4, O = -2

1 point 1.A TRA-2.A

In the box below, draw a complete Lewis electron-dot diagram for one valid resonance structure of SO₂(q). Any one of the three following diagrams is acceptable.

1 point

SAP-4.A

One point for the correct number of electrons.

One point for a valid Lewis diagram.

1 point

SAP-4.A

Total for part (d)

2 points

Based on the diagram you drew in part (d), what is the approximate oxygen-sulfur-oxygen bond?

One point for an angle that is consistent with the student's Lewis structure: 120°

1 point

SAP-4.C

Is the value of ΔS° for the reaction represented above positive or negative? Justify your answer. One point for indicating negative with a valid explanation that mentions the smaller number of moles of gas in the products.

4.C

· Negative, because the reactants are three moles of gas but the products are only two moles of gas.

Is the magnitude of ΔH° for the reaction to form SO₃ (I), represented above, greater than, less than, or equal to the magnitude of ΔH° for the reaction to form SO₃ (g)? Justify your answer.

1 point 6.D

One point for indicating greater magnitude with a valid justification:.

• Greater, because the enthalpy of SO₃ (I) is lower than the enthalpy of SO₃ (g) (by an amount equal to the enthalpy of vaporization of SO_3 (I)), which makes the difference between the enthalpy of the reactants and the enthalpy of the products a larger amount.

ENE-3.D

Based on the information above, how does the thermodynamic favorability of the reaction change as the (h) temperature of the reaction system is decreased? Justify your answer.

1 point

S.C

One point for indicating an increased thermodynamic favorability along with a valid justification.

ENE-4.C

• $\Delta G_{rxn} = \Delta H_{rxn} - T \Delta S_{rxn}$. Assuming that both ΔH_{rxn} and ΔS_{rxn} are constant, as the value of T is decreased, the smaller in value the term ($T\Delta S_{rxn}$) becomes, making the term ($\Delta H_{rxn} - T\Delta S_{rxn}$) more negative. Thus ΔG_{rxn} becomes more negative, increasing the thermodynamic favorability of the reaction.

> **Total for question 2** 10 points