AP[®] PHYSICS 2 2019 SCORING GUIDELINES

Question 1

10 points

The figure above shows a particle with positive charge +Q traveling with a constant speed v_0 to the right and in the plane of the page. The particle is approaching a region, shown by the dashed box, that contains a constant uniform field. The effects of gravity are negligible.

(a)

i. LO 2.C.1.1, SP 6.4 2 points

On the figure below, draw a possible path of the particle in the region if the region contains only an electric field directed toward the bottom of the page.

For a curved path that is initially horizontal and does not have a component of velocity toward the left	1 point
For a path that deflects toward the bottom of the page and reaches an edge of the region	1 point

ii. LO 3.C.3.1, SP 1.4 2 points

On the figure below, draw a possible path of the particle in the region if the region contains only a magnetic field directed out of the page.

For a curved path that is initially horizontal, is not more than a semicircle, and reaches	1 point
an edge of the region	
For a path that deflects toward the bottom of the page	1 point

AP[®] PHYSICS 2 2019 SCORING GUIDELINES

Question 1 (continued)

- (a) (continued)
 - iii. LO 2.C.5.3, SP 1.1, 7.1 1 point

For which of the previous situations is the motion more similar to that of a projectile in only a gravitational field near Earth's surface, and why?

For indicating that the motion in the electric field is more similar to a projectile because	1 point
the force or acceleration is always down or constant, or the shape is parabolic	

(b) LO 2.D.1.1, SP 2.2; LO 3.A.3.4, SP 6.1, 6.4; LO 3.B.1.4, SP 6.4, 7.2; LO 3.B.2.1, SP 1.1, 1.4, 2.2 5 points

Another region of space contains an electric field directed toward the top of the page and a magnetic field directed out of the page. Both fields are constant and uniform. A horizontal beam of protons with a variety of speeds enters the region, as shown above. Protons exit the region at a variety of locations, including points 1 and 2 shown on the figure. In a coherent, paragraph-length response, explain why some protons exit the region at point 1 and others exit at point 2. Use physics principles to explain your reasoning.

For indicating that initially the electric and magnetic forces act in opposite directions	1 point
For indicating or implying that the magnetic force is affected by speed, but the electric	1 point
force is not	
For indicating that different paths occur as a result of the addition of forces	1 point
For indicating that slower protons exit higher than faster protons (i.e., slower protons	1 point
exit at point 1 and faster protons exit at point 2)	
For a logical, relevant, and internally consistent argument that addresses the question	1 point
asked and follows the guidelines described in the published requirements for the	
paragraph-length response	
Example:	
For a charged particle to travel through the region undeflected, the net force on it must	
be zero. This means that the upward electric force and the downward magnetic force	
must be equal and opposite to each other. This occurs for a particular speed. The	
electric force is independent of the particle's velocity, but the magnetic force will be	
larger for greater velocities and less for smaller velocities. If a particle is moving	
faster than the particular speed, it will experience a greater magnetic force and be	
deflected downward. If it is moving more slowly than the particular speed, it will be	
deflected upward.	