AP® PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Speed of light, $c = 3.00 \times 10^8$ m/s

 $e = 1.60 \times 10^{-19} \text{ C}$ Electron charge magnitude,

 $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$ Coulomb's law constant,

Universal gravitational $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

constant,

Acceleration due to gravity

 $g = 9.8 \text{ m/s}^2$ at Earth's surface,

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	С		
SYMBOLS	second,	S	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES				
Factor	Prefix	Symbol		
10^{12}	tera	Т		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^{-2}	centi	С		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10^{-9}	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	~

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

AP® PHYSICS 1 EQUATIONS

MECHANICS

$v_x = v_{x0} + a_x t$	a = acceleration A = amplitude
1	*
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	d = distance
$\frac{1}{2}$	E = energy
$v^2 - v^2 + 2\pi (v - v)$	f = frequency
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	F = force
$\nabla \vec{r} = \vec{r}$	I = rotational inerti

$$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$$
 $I = \text{rotational inertia}$ $K = \text{kinetic energy}$ $k = \text{spring constant}$ $|\vec{F}_f| \le \mu |\vec{F}_n|$ $L = \text{angular momentum}$

$$a_c = \frac{v^2}{r}$$

$$\vec{p} = m\vec{v}$$

$$\ell = \text{length}$$

$$m = \text{mass}$$

$$P = \text{power}$$

$$p = \text{momentum}$$

$$r$$
 = radius or separation
$$\Delta \vec{p} = \vec{F} \Delta t$$
 T = period
$$t$$
 = time

$$K = \frac{1}{2}mv^2$$
 $U = \text{potential energy}$ $V = \text{volume}$

$$\Delta E = W = F_{||}d = Fd\cos\theta$$
 $v = \text{speed}$
 $W = \text{work done on a system}$

$$P = \frac{\Delta E}{\Delta t}$$
 $x = \text{position}$ $y = \text{height}$

$$\alpha = \text{angular acceleration}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\mu = \text{coefficient of friction}$$

$$\theta = \text{angle}$$

$$\omega = \omega_0 + \alpha t$$

$$\alpha = A\cos(2\pi f t)$$

$$\theta = \text{angle}$$

$$\rho = \text{density}$$

$$\tau = \text{torque}$$

$$\omega = \text{angular speed}$$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I} \qquad \Delta U_g = mg \, \Delta y$$

$$\tau = r_{\perp}F = rF\sin\theta$$

$$L = I\omega$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$\Delta L = \tau \, \Delta t \qquad \qquad T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$K = \frac{1}{2}I\omega^2 \qquad T_p = 2\pi\sqrt{\frac{\ell}{g}}$$

$$\left| \vec{F}_{g} \right| = k \left| \vec{x} \right|$$

$$\left| \vec{F}_{g} \right| = G \frac{m_{1} m_{2}}{r^{2}}$$

$$U_{s} = \frac{1}{2}kx^{2}$$

$$\rho = \frac{m}{V}$$

$$\vec{g} = \frac{\vec{F}_{g}}{m}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY

$$|\vec{F}_{E}| = k \left| \frac{q_{1}q_{2}}{r^{2}} \right| \qquad A = \text{area}$$

$$F = \text{force}$$

$$I = \text{current}$$

$$\ell = \text{length}$$

$$P = \text{power}$$

$$R = \frac{\rho\ell}{A} \qquad q = \text{charge}$$

$$R = \text{resistance}$$

$$I = \frac{\Delta V}{R} \qquad r = \text{separation}$$

$$t = \text{time}$$

$$P = I \Delta V \qquad V = \text{electric potential}$$

$$R_{s} = \sum R_{i}$$

WAVES

 $\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$

$$\lambda = \frac{v}{f}$$

$$f = \text{frequency}$$

$$v = \text{speed}$$

$$\lambda = \text{wavelength}$$

GEOMETRY AND TRIGONOMETRY

Rectangle	A = area
A = bh	C = circumference
	V = volume
Triangle	S = surface area
	b = base
$A = \frac{1}{2}bh$	h = height
2	$\ell = length$
Circle	w = width
	r = radius
$A = \pi r^2$	
$C = 2\pi r$	

Rectangular solid
$$V = \ell wh$$
 Right triangle $c^2 = a^2 + b^2$ $\sin \theta = \frac{a}{c}$

Rectangular solid
$$V = \ell wh$$

$$\sin \theta = \frac{a}{c}$$
Cylinder
$$V = \pi r^2 \ell$$

$$S = 2\pi r \ell + 2\pi r^2$$

$$\tan \theta = \frac{a}{b}$$

